Multi-task Reinforcement Learning with Soft Modularization

Ruihan Yang, Huazhe Xu, Yi Wu, Xiaolong Wang

project page: <u>https://rchalyang.github.io/SoftModule</u>

Motivation

Most RL: specialized

How? Multi-task RL

Goal: Apply to real-world

Picture source: https://robotage.guru/robot-chef-robotic-kitchen/

Current Multi-task RL Benchmark: Meta-World

Containing dozens of robotics manipulation tasks.

Yu, T et al. Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning, 2019

Meta-World

Success Rate

Haarnoja, T et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018

Baseline failed to generalize to different tasks

Close Drawer

Insert Peg

General Multi-Task Learning

Computer Vision: Detection + Segmentation

Robot Learning: Pushing + Grasping + Poking > Grasping

He, K et al. Mask R-CNN, 2017

Pinto, L et al. Learning to Push by Grasping: Using multiple tasks for effective Learning, 2017

Two Challenges in Multi-Task Reinforcement Learning

Avoid negatively interference between irrelevant tasks

Reuse shared components across similar tasks

Open Window

Modularization

Previous Modular network for multi-task RL

In hierarchical manner

Andreas, J., Klein, D., and Levine, S. Modular multi-task reinforcement learning with policy sketches, 2017

Base Policy Network + Routing Network

Differentiable

Temperature weight for multi-task RL:

$$J_{\pi}(\phi) = \mathbb{E}_{\mathcal{T} \sim p(\mathcal{T})}[w_{\mathcal{T}} \cdot J_{\pi,\mathcal{T}}(\phi)]$$
(1)

Temperature adjustment in SAC:

$$J(\alpha) = E_{a_t \sim \pi_{\phi}}[-\alpha \log \pi_{\phi}(a_t|s_t) - \alpha \overline{\mathcal{H}}]$$
(2)

Temperature weight for multi-task RL:

$$w_i = \frac{\exp(-\alpha_i)}{\sum_{j=1}^{M} \exp(-\alpha_i)}$$
(3)

Push

Close Window

Module Sharing : Knowledge Sharing.

Push

Close Window

Module Sharing : Knowledge Sharing.

Open Door

Open Drawer

Module Sharing : Knowledge Sharing.

Open Door

Open Drawer

Original Meta-World: Fixed goal. MT10-Fixed / MT50-Fixed

More realistic and more challenging: Goal conditioned MT10-Conditioned / MT50-Conditioned

Experiments : Over All

MT10 100.00% 80.00% 60.00% 40.00% 20.00% 0.00% Fixed Conditioned Ours Multi-Task Multi-Head SAC

MT10-Conditioned

Experiments : MT50

MT50-Conditioned

Effects on Network Capacity

Performed on MT50-Fixed ^C

Larger network can not solve multi-task RL.

Effects on Network Capacity

Ours

- Multi-Task Multi-Head SAC-4
- Multi-Task Multi-Head SAC-4-Wide
- Multi-Task Multi-Head SAC-6

Comparison with Single Task Policy

Comparison with Single Task Policy

MT10-Conditioned

Routing Visualization

Different Task: Separated

Similar Task: Closer

Routing Visualization

Thanks!

Our project page: https://rchalyang.github.io/SoftModule